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SYNOPSIS 

A new algorithm is presented for the prediction of equilibrium morphology in latex particles. 
Thermodynamic equilibrium calculations of the interfacial free energies associated with a large 
array of possible morphologies serve to create a continuous free-energy surface upon which the 
preferred morphology is located. When the computations are performed on a 486DX33 PC, 
the calculations are essentially instantaneous. The graphical output can be refreshed on the 
monitor screen in less than 2 s. The algorithm is applied to simulate the conversion-dependent 
morphology for several latex systems composed of polystyrene and poly(methy1 methacrylate) 
and two very different surfactants. 0 1995 John Wiley & Sons, Inc. 

INTRODUCTION 

The morphology of multistage emulsion particles has 
become an increasingly important subject during the 
last decade. A wide variety of structures, such as 
those represented in Figure 1, have been reported 
as a result of a variety of experimental investiga- 
t ion~. ' -~ Equilibrium morphologies are achieved 
when the rate of diffusion of a chain is much faster 
than is the polymerization rate. Kinetic-controlled 
morphologies are obtained when phase separation 
proceeds more slowly than the polymerization rate. 
At this point in time, the modeling of composite 
latex particle morphology has reached a significant 
level of sophistication. The early models for two- 
component particles based upon thermodynamic 
equilibrium considerations applicable only at the end 
of the latex production process6-'' have been 
expanded to include conversion-dependent path- 
ways and three-component  particle^.'^ Although 
all present models are restricted to thermodynamic 
equilibrium conditions ( i.e., phase-separation ki- 
netics being much faster than polymerization ki- 
netics), a significantly wide variety of particle mor- 
phologies have been considered, l6 including moon- 
like  structure^,^','^ occluded structures, 11~12 and 

sandwich structures." Three-component particles 
are dramatically richer in thermodynamically stable 
morphological complexities, but can also be modeled 
in a straightforward rnanner.l5 The purpose of the 
present work was to offer a new computational ap- 
proach which leads to the generation of a graphic 
display of the free-energy surface for a continuous 
spectrum of different equilibrium morphologies and 
from which the user can readily follow the conver- 
sion-dependent morphology pathway. The compu- 
tation of the energy surface is essentially instanta- 
neous on a 486DX33 PC. Phase diagrams and par- 
ticle morphologies are displayed on the same screen, 
which can be refreshed in less than 2 s. The graphical 
presentation is enhanced by using a color output to 
highlight the various free-energy levels in the con- 
tinuous surface-energy spectrum. 

THERMODYNAMIC CONSIDERATIONS 

The concept of predicting two-component particle 
shapes via the minimization of the interfacial energy 
was first applied by Torza and Mason l7 in their study 
of immiscible oil droplets suspended in water. Later, 
Sundberg and co-workers6 extended this work with 
applications to polymer particles by the use of eq. 
(1): 

* To whom correspondence should be addressed. 
Journal  0 1  Applied Polymer Science, Vol. 58, 1607-1618 (1995) 
B.) 1995 .John Wiley & Sons, Inc. CCC 0021-8995/95/091607-12 
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Figure 1 
latex particles. 

Some examples of morphologies of two-phase 

where b y  is the reduced free energy; Ai , the surface 
area of interface i ;  A o ,  the initial surface area of the 
seed latex particle; and yi , the interfacial tension. 
The present work describes a conversion-dependent 
version of eq. (1) with a continuous spectrum of 
morphologies considered. Here, the seed polymer is 
denoted as P I ,  the second-stage monomer as M ,  and 
the second-stage polymer as Pz .  The two polymers 
are considered to be totally immiscible with each 
other and insoluble in the aqueous phase. The 
monomer is distributed between the two polymer 
phases and the aqueous phase, and its concentration 
in each phase is computed via its chemical poten- 
tials, as shown below. The calculations of the various 
monomer concentrations are very important as they 
influence the interfacial tensions a t  all the polymer 
interfaces. Furthermore, the polymer /monomer in- 
teraction parameters, x,/P, are also dependent on 
monomer concentration. The calculations are done 
in three steps, the first being the partitioning of the 
monomer between the two polymer phases and the 
aqueous phase. Then, the volumes of the two poly- 
mer phases are computed a t  the chosen conversion 
level. Finally, a particle morphology is assumed and 
its reduced free energy is calculated. This sequence 
of computations is shown in the flow chart of Figure 
2. Obviously, some parameters must be known prior 
to the calculation process; among these are the 
polymer molecular weights, densities of all compo- 
nents, and the saturation concentration of monomer 
in the aqueous phase. 

Partitioning of the Monomer Between the Phases 

A t  an arbitrary point of conversion during the re- 
action, any of the morphologies depicted in Figure 

1 consists of two polymer phases (both containing 
monomer) surrounded by an  aqueous phase. Under 
equilibrium conditions, one can write that the 
chemical potential of the monomer is the same in 
all three phases: 

where A designates the aqueous phase. Expressions 
for each of these chemical potentials can be written 
in traditional form as  

where p k  is the chemical potential of the pure 
monomer; X$, the monomer solubility in water; 
@c, the volume fraction of monomer in phase h; 
X M  /I.fir the Flory-Huggins monomer/polymer K in- 
teraction parameter; m k  = V,/VJ+; V M ,  Vl.h, the mo- 
lar volumes of the monomer and the polymer K ,  re- 
spectively, and X,, mol fraction of  monomer in the 
aqueous phase. We omitted the Morton term de- 
scribing the influence of the latex particle surface, 
since it is far too small to influence the calculations 

Lset conversion c 1 

Calculate volumes of 

+ 1 Energy minimization I 
Figure 2 Flow chart for the calculation of the reduced 
free energy of a two-phase latex particle at  a given mono- 
mer conversion. 
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a t  all conditions other than maximum particle 
swelling.'s-20 

At a given conversion, the amount of monomer 
converted into polymer is known, so one can write 
a material balance on the monomer: 

n& = n$ + nF + nc + np2 (6 )  

where n& ( h  = 0,  A ,  P1, Pa) are the moles of mono- 
mer a t  zero conversion ( h  = 0), in the aqueous phase, 
and in phases 1 and 2, respectively, and np2 is the 
number of moles of monomer converted in polymer 
2. Solving eq. (6) for nc and using the definition of 
conversion as c = nP2/n& yields 

Relating the moles of monomer in each polymer 
phase to  the related volume fraction of monomer, @as, results in 

where Mwk is molecular weight and dk is density for 
each component h. The mol fraction of monomer in 
the aqueous phase is given by 

1 
x"=( 1+- A&$;;) 

where Maqueous is the total mass of the aqueous phase 
and the factor 18 represents the molecular weight 
of water. 

Taking the chemical potential of pure monomer 
in its reference state to be zero, eqs. (4) and (5) can 
individually be equated to  eq. (3) .  Then, in combi- 
nation with eq. (7) ,  we have a system of three equa- 
tions and three unknowns nh ( k  = A ,  P I ,  P2) 
shown below: 

as 

1 )  

TI 

The method used to  solve these equations is given 
in Table I. It is to  be noted that  the interaction 
parameter can be a function of @e and that an elas- 
tic term (crosslinked systems) could be added to the 
expressions for the chemical potentials, with no 
modification of the above calculation scheme. 

When the calculation of the monomer partition- 
ing is finished, the volume of the two polymer phases 
can be calculated as 

where N p  is the number of seed latex particles, and 
Nwpl, the molecular weight of the monomer used to 
make polymer 1. All these computations are done 
without regard to the latex particle morphology and 
comprise one module within the overall algorithm 
used to  calculate free energies. This is shown in Fig- 
ure 2 and discussed in the next section. 

GEOMETRIC CONSIDERATIONS 

The general geometry of the two-phase particle con- 
sidered in this work is the same as that reported 
earlier,I4 but a new set of variables is used to reduce 
the complexity of the equations of the earlier anal- 

Table I 
Partitioning 

Computational Method for Monomer 

Assume a value of n: in the range [0, nG] 

Calculate @: using eq. (8) 
Calculate Y1 = Ln @; + (1 - @2)(1 - rnJ 

Calculate X M  = X &  exp(Y,) 
Calculate n$ from eq. (10) 
Calculate nc from eq. (13) 
Calculate @: from eq. (9) 
Calculate Y2 = Ln 

A new value of n g  is assumed to get convergence of 

+ X M / , > , ( l  - @E)Z 

+ (1 - @g)(1 - rnJ 
+ XM/,& - @;y 
( Y ,  - Yv)  toward 0. 
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ysis. Figure 3 shows a cross section of the general 
morphology with all the geometric angles and radii 
displayed. 

Various combinations of these variables will yield 
a continuous array of morphologies on a planar sur- 
face with four principle axes (a1, p1 and a2,  p 2 )  as 
shown in Figure 4. In Figure 5 are displayed some 
of the fully phase-separated morphologies with the 
seed polymer in black and the second stage polymer 
in gray. In Figures 4 and 5 ,  three domains are dis- 
tinguished: On the left, in light gray, the first domain 
has a convex seed polymer phase. The second do- 
main, in the center, in white, has a flat polymer/ 
polymer interface. On the right, in dark gray, the 
third domain has a concave seed polymer phase. At 
the a1 = T location, the morphology is described as 
core-shell (CS);  at a2 = T ,  as inverted core-shell 
(ICS); and at  al = a2 = 0, as individual particles 
( IP )  . All the other locations display intermediate 
morphologies, some of which are commonly de- 
scribed as hemispheres and moonlike or engulfed 
structures. 

The monomer partitioning thermodynamics al- 
lows one to compute the volumes of the two poly- 
mer /monomer phases at  any extent of conversion 
during the reaction. To compute the reduced free 
energy of the composite particle [ eq. ( 16) 1 ,  the sur- 
face areas of the interfaces must be computed: 

AY = AG/Ao 

where Al represents the area of the aqueous/poly- 
mer 1 interface; A 2 ,  that for polymer 2; Ao, that of 
the seed latex particle; and Ai , the organic interface 

Figure 4 
surface having four principal axes. 

Continuous array of morphologies on a planar 

between polymer 1 and polymer 2, and W designates 
water (including the presence of surfactants, initi- 
ator end groups, etc., if any), and Tkl, the interfacial 
tension between phases k and 1. The surface-area 
calculations are somewhat complicated and it is 
helpful to divide the morphology map displayed in 
Figure 4 into three distinct domains: The first one 
takes the seed polymer phase 1 as convex, the second 
has a flat polymer/polymer interface, and the third 
has phase 1 as concave. 

Phase 1 Convex 

Consideration of the problem shows that beside the 
conversion c one needs to assume the values of two 
additional variables. It is obvious that the geometric 
model contains eight variables (rl, r,, ri, a1, a2, ai, 
pl, p2) in addition to the conversion c. We write four 
geometric and two volumetric relationships [eqs. 
(18) and (2l) l .  The new approach suggests that one 
assumes values for a1 and p1 at the start. It is clear 

--- 

Figure 3 Cross section of the general geometry studied 
in this model. All interfaces are portions of spheres and 
phase 1 contains the seed polymer. 

Figure 5 
Figure 4. 

Illustrative topological map corresponding to 
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(17) 
a 

ai = a1 + p1 - - that al must be in the range [0, PI. As we have re- 

on p1 is a flat interface; the other is a spherical in- 
terface of same radius as sphere 1. In quantitative 
terms, these limits appear as 

stricted the shape of phase 1 to be convex, one limit 2 

and then the volume of phase one is written as 

P VJJl = - (r34 - (1 - cos al) 
a a 3 Flat interface 0 I a < - , p1 = - - a1 

x (2 - (cos a,)2 - cos a,)] l - 2  2 

lr a 
Spherical interface - I a1 I a, p1 = a1 - - 2 2 

+ $(l  - cos ai)(2 - (COS ai)' - cos ai)} (18) 

A simple geometric relationship also exists between 
the three spheres and can be expressed as Engulfment 0 I a,  I a, p1 = 0 

Between the three limits shown above, one chooses 
a value of a1 and a value of pl. ai is easily calculated 
with the relation 

ri - sin ai = rl - sin a1 = r2 - sin ap (19) 

By combining eqs. (18) and (19), it is possible to 
calculate rl as 

3 VPI 
sin a1 

14 - (1 - cos a1)(2 - (cos ad2 - cos a,)] + (sin - ai) (1 - cos %)(2 - (cos aA2 - cos ai) 

Turning to phase 2, its volume can be written as 

a VIJp = - { $14 - (1 - cos a2) 
3 

x (2 - (cos ap)2 - cos a p ) ]  

- r!(l - cos ai)(2 - (cos ai>2 - cos ai)} (21) 

Using eq. (19) and defining K as 

3 VPP 
a(rl sin 

K =  

(1 - cos %)(2 - (cos ai)2 - cos ai) 

(sin ai)3 + (22) 

eq. (21) can be rearranged as follows: 

4 - (1 - cos ad(2  - (cos a2)2 - cos ap) 

(sin a2)3 
- K = O  

(23) 

Since at any condition of interest, V p 2  is known from 
eq. (15) and ai and rl are calculated from eqs. (17) 
and (20), respectively, eqs. (22) and (23) can be 
solved for a2 (0 I a2 I T ) .  

With all the geometric angles and radii known, 
the interfacial areas can be calculated as 

Al = 2ar:(1 + cos a,) 

AP = 2ar;(l + cos a2) (24) 1 Ai = 2 ~ e ( 1  + cos ai) 

These areas can now be used to compute the reduced 
free energy via eq. (16). 

Flat Interface 

For the case of a flat interface between phases 1 and 
2 shown in Figure 3, the calculations are simpler as 
they present a limit of the previous calculations. A 

value of a,  is chosen within the limit 0 I a < - . a 
l - 2  

The volume of phase 1 can be expressed as 

lr 
v p ,  = - r34 - (1 - cos a1) 

3 

X (2 - (COS - cos a,)] (25) 

from which r1 can be determined. Further, 

Ai = wq[l  - (cos a1)2] 

A l  = 2ar:[1 + (cos 
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r2 and a2 are connected through the geometric re- 
lation (28) and the volume equation (29): 

rl sin al = r2 sin a2 (28) 

n- 
Vp, = - r:[4 - (1 - cos a2) 

3 

x (2 - (cos .2)2 - cos 4 1  (29) 

A combination of (28) and (29) can be used to solve 
for aP first, then r2. 

Finally, we can calculate AP: 

AP = 27rr;[l + (cos (30) 

As before, the interfacial areas from eqs. (26), (27), 
and (30) can be used to calculate the reduced surface 
energy from eq. (16). 

Phase 1 Concave 

When phase 1 is concave, phase 2 is convex. Thus, 
the appropriate calculations can be made by switch- 
ing the subscripts “1” and “2” in eqs. (17)-(24). 

A computer program has been written in Pascal 
on a 486DX33 PC. The output needs three dimen- 
sions to be displayed (two geometric parameters and 
the resulting reduced free energy). A t  a given con- 
version, the free energy is plotted on the vertical 
axis and the two geometric parameters on an X / Y  
axis placed a t  a bias. The three cases evoked earlier 
are put together on one plot. The convex case (rel- 
ative to phase 1) is placed on the left, the concave 
case is on the right (with a rotation of 60”), and the 
case of the flat polymer/polymer interface is placed 
between the two lines: 

x x 
O < a , s - ,  p = - -  a, with n = 1, 2 

2 “ 2  

Figure 5 shows the resulting morphology map rep- 
resenting some of the particle shapes and showing 
several axes. 

Because of the high speed of the computer and 
the efficiency of the algorithm, calculations take less 
than 2 s for a given conversion, including the graph- 
ical display time. This high-speed computation al- 
lows the avoidance of storing procedures. The user 
can interact easily by setting new values of the in- 
terfacial tension or interaction parameter and get a 
quick answer. The main advantage of this output is 
the creation of a continuous surface for all the con- 
sidered morphologies and one readily sees the dif- 

ference between the energies of various morpholo- 
gies. The minimum energy is readily found by a 
computer search and explicitly displayed on the 
surface by a circled cross. Examples of such surfaces 
are presented in the discussion section. 

DISCUSSION 

To demonstrate the output characteristics of this 
new computational model, we used the experimental 
system reported by Winzor and Sundberg.” Here, 
polystyrene ( PS ) or poly ( methyl methacrylate ) 
(PMMA) seed particles were swollen to  100% in- 
creased volume with methyl methacrylate (MMA) 
or styrene monomer and the large particle-size lat- 
ices were stabilized by either sodium dodecyl sulfate 
(SDS) or a natural pectin ( M X P )  . Interaction pa- 
rameters were obtained from a handbookz1 or sim- 
ulated via a Unifac computer program.22 All the in- 
terfacial tensions and their variations with MMA 
concentration were taken from Winzor and Sund- 
berg. 

Three experimental systems were simulated in 
the present work and these are described in Table 
11. Other experimental details are contained in 
Winzor and Sundberg’s article.” Figures 6 and 7 
show the variations of all interfacial tensions as a 
function of monomer conversion for systems I, 11, 
and 111, respectively. The dependency of the inter- 
action parameters with monomer volume fraction 
are shown in Figure 8. 

The graphic output from the computational 
scheme applied to any chosen conversion level con- 
sists of a free-energy surface with the point of min- 
imum energy denoted, a cross-sectional represen- 
tation of the preferred morphology of the latex par- 
ticle, and a triangular diagram on which the phase 
compositions are depicted a t  the end of the equilib- 
rium tie line. The compositional pathway for the 
polymerization reaction is also displayed in the tri- 
angular diagram. Figure 9 shows these features for 
system I11 of Table I1 at 75% conversion of the sty- 
rene monomer. Here, the energy surface displays 
greatly different contours and clearly shows that an  

Table I1 Stimulated Experiments” 

System Seed Polymer Monomer Surfactant 

I PS MMA MXP 
I1 PS MMA SDS 
I11 PMMA Styrene MXP 
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C, Conversion of MMA 

Figure 6 Interfacial tension depending on conversion between (PS + MMA)/(water 
+ MXP), (PMMA + MMA)/(water + MXP), (PS + MMA)/(water + SDS), (PMMA 
+ MMA)/(water + SDS), and (PS + MMA)/(PMMA + MMA), after Winzor and Sund- 
berg. '' 

Figure 7 Interfacial tension depending on conversion between (PMMA + styrene)/(water 
+ MXP), (PS + styrene)/(water + MXP), and (PS + styrene)/(PMMA + styrene), after 
Winzor and Sundberg." 
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Figure 8 
PMMA/styrene2’ depending on polymer volume ratio. 

Interaction parameter between PS/MMA,2’ PS/styrene?‘ PMMA/MMA?’ and 

inverted core-shell structure is predicted. The colors 
of the free-energy surface are alternated every 1 mN/ 
m. A t  the bottom right of the figure are the values 
of the interfacial tensions (Gaml = ypl/w,  Gam2 
- y1>2/w, Gaml2 = yp1/1’2) calculated at  the indi- - 

cated conversion level. The conversion dependency 
of the particle morphology can be seen in the se- 
quential outputs at 25, 50, 75, and 100% conversion 
for system I, as shown in Figures 10-13. As conver- 
sion increases, all the free energies increase (due to 
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Conversion I 75% 

G a m l  =16.8 nN/n 
Gan2 ~ 3 4 . 7  nN/n 
GanlZ= 1.4 nN/n 

Figure 9 
system at 75% conversion. 

Graphic display of the morphology calculations for the PMMA/styrene/MXP 
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Figure 10 
at 25% conversion. 

Graphic display of the morphology calculations for the PS/MMA/MXP system 

increasing interfacial tensions with lower monomer 
concentrations) and the energy surface changes 
shape dramatically. However, for this system, the 
morphology always remains core-shell, with the 
PMMA accumulating at  the aqueous interface. 
Winzor and Sundberg12 also reported a core-shell 
morphology for this system. 

In contrast to the results for system I, that of 
system I1 shows a rather hemispherical morphology 
at  75% monomer conversion, as seen in Figure 14. 
This is clearly due to dramatic changes in yl,llw and 
y p 2 / W  brought about by the change in surfactants. 
The SDS lowers the aqueous/polymer phase inter- 
facial tensions so greatly that there is not much dif- 

s7 
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: n N / n  

3- 

2.; 

I..{ 

S. - I Conuersion = 50% - 
'*' 
: G a n l  =19.0 n N / n  
: G a n 2  = 4 . 9  n N / n  
+. G a n 1 2 =  1 . 0  n N / n  

..). 

_*. 

Figure 11 
a t  50% conversion. 

Graphic display of the morphology calculations for the PS/MMA/MXP system 
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Figure 12 
a t  75% conversion. 

Graphic display of the morphology calculations for the PS/MMA/MXP system 

ference between yI , l lw and y1J2/w. This causes the As indicated earlier, the above descriptions are 
internal interface between the two polymers to be- limited to equilibrium conditions. However, we find 
come an important contributor to the overall energy that batch reaction conditions with relatively slow 
of the particle and the morphology shifts so as  to polymerization kinetics can yield experimental 
minimize this interfacial area. These shifts in mor- morphologies which are a t  or close to  equilibrium 
phology are in agreement with the experimental re- conditions. Thus, one can readily study any of the 
sults of Winzor and Sundberg.I2 parameters which may affect the various interfacial 

5.r 
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: n N / n  
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i G a n 1 2 =  1 . 9  n N / n  
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Figure 13 
a t  100% conversion. 

Graphic display of the morphology calculations for the PS/MMA/MXP system 
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Conversion = 75% 

j Ganl =11.3 nN/n 
Gan2 ~10.9 nN/n 

Ganl2= 1.4 nN/n 
..... 

Figure 14 
at 75% conversion. 

Graphic display of the morphology calculations for the PS/MMA/SDS system 

tensions, such as surfactants, initiator end groups, 
comonomers, and the like. 

CONCLUDING REMARKS 

An interactive computer program is now available 
to predict conversion-dependent, equilibrium latex 
morphologies with a graphic display of the entire 
free-energy surface. On such a diagram, one cannot 
only identify the lowest point which corresponds to 
the preferred particle morphology, but also visualize 
the slope of the surface surrounding the minimum 
point. With steep contours adjacent to the minimum 
point, there is little doubt that the predicted mor- 
phology should match that found experimentally, 
assuming that the correct values of interfacial ten- 
sions have been used in the calculations. When the 
minimum point is located within a rather flat area 
on the energy surface, there are a variety of particles 
morphologies which possess nearly equal energies. 
In such a case, very accurate values of the interfacial 
tensions are required to obtain predictions in agree- 
ment with experiment. This constitutes a distinct 
advantage in our evolving understanding of the fac- 
tors which control the equilibrium morphology of 
latex particles. 

We are grateful for the partial financial support of Rh6ne- 
Poulenc and for the helpful mathematical discussions with 
Professor Claire Durant. 
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